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Abstract. We prove existence and uniqueness of positive solutions of an age-

structured population equation of McKendrick type with spatial diffusion in L1.
The coefficients may depend on age and position. Moreover, the mortality rate is al-

lowed to be unbounded and the fertility rate is time dependent. In the time periodic

case, we estimate the essential spectral radius of the monodromy operator which
gives information on the asymptotic behaviour of solutions. Our work extends pre-

vious results in [19], [24], [30], and [31] to the non–autonomous situation. We use

the theory of evolution semigroups and extrapolation spaces.

1. Introduction. The investigation of an age–structured population of Mc-
Kendrick type with age and space dependent spatial diffusion leads to the mathe-
matical model

(P )



∂tu(t, a, x) + ∂au(t, a, x)

=

n∑
k,l=1

∂k akl(a, x) ∂l u(t, a, x) +

n∑
k=1

bk(a, x) ∂ku(t, a, x)

+c(a, x)u(t, a, x)− µ(a, x)u(t, a, x), t ≥ s, 0 ≤ a ≤ am, x ∈ Ω,
n∑
k=1

αk(a, x) ∂ku(t, a, x) + γ(a, x)u(t, a, x) = 0, t ≥ s, 0 ≤ a ≤ am, x ∈ Γ1,

u(t, a, x) = 0, t ≥ s, 0 ≤ a ≤ am, x ∈ Γ0,

u(t, 0, x) =

∫ am

0

β(t, a, x)u(t, a, x) da, t ≥ s, x ∈ Ω,

u(s, a, x) = f(a, x) ≥ 0, 0 ≤ a ≤ am, x ∈ Ω.

Here u(t, a, x) is the population density at time t, age a, and position x, Ω is a
bounded domain in Rn with smooth boundary ∂Ω = Γ0∪̇Γ1, and am ∈ (0,∞] is the
maximal life expectancy. Let I = [0, am] for finite am and I = R+ for am =∞. The
coefficients akl, bk, c, αk, γ are assumed to be real, sufficiently smooth and uniformly
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elliptic. They describe the movement of the population and the behaviour at the
boundary. Further, the mortality rate µ ≥ 0 is allowed to be singular with respect
to x and a. Nonintegrability of µ at a = am ensures that no individual reaches
maximal age, see e.g. [8, (8)], and a singularity of x 7→ µ(a, x) may represent a very
hostile part of the domain. Finally, the fertility rate β ≥ 0 depends on the time
to reflect, e.g., seasonal changes and is supposed to be uniformly continuous. (See
Section 4 for a precise statement of our hypotheses.)

In the present paper, we show existence and uniqueness of positive (generalized)
solutions of (P) and discuss, for time periodic β, spectral and asymptotic properties
of the solution operators. In the autonomous case, problem (P) has been solved in
L2(I×Ω) by a semigroup approach, see [8], [10], or [15]. However, the natural state
space is E = L1(I × Ω) because ‖u(t)‖1 gives the size of the population at time
t. In the L1–setting, we can treat (P) by means of more elaborated perturbation
techniques. Similar methods were used in [19] and [24], see also [30] and [31], for
time independent fertility rates β and bounded mortality rates µ. More references
to related literature can be found in the above mentioned papers and in [35, p.24].
Further, G.F. Webb’s monograph [35] extensively treats nonlinear versions of (P)
without diffusion.

Let us sketch our approach. Consider the realization A(a) in X = L1(Ω) of
the diffusion operator A(a, x,D) =

∑
kl ∂k akl(a, x) ∂l +

∑
k bk(a, x) ∂k + c(a, x) Id

subject to the mixed boundary conditions given in the second and third equation of
(P), see Section 4. The operator Lf := −f ′+A(·)f(·) defined on a suitable subspace
of E ∼= L1(I,X) has a closure G in E, Proposition 4.5. It is very important for
our analysis that the restriction G0 of G to functions with f(0) = 0 generates the
evolution semigroup (T0(t)f)(a) = χI(a− t)U(a, a− t)f(a− t) on L1(I,X), where
U(a, r) solves the Cauchy problem (4.2) related to A(·) and χM is the characteristic
function of a set M . This allows to use the perturbation theory of Miyadera type
developped in [23]. So we show that D(G) is contained in the domain of the multi-
plication operator V induced by µ on E and that the operator GV on X×E defined
by (0, f) 7→ (−f(0), (G − V )f) for f ∈ D(G) is a Hille-Yosida operator, see (2.1).
Now the birth law in (P), given by the operators B(t)f =

∫ am
0

β(t, a, ·)f(a, ·)da,
can be expressed by a perturbation of GV in X ×E of the form (0, f) 7→ (B(t)f, 0).
From results in [25] and [13], we then derive the existence of a positive evolution
family (W (t, s))t≥s≥0 on E solving (P), see Theorem 4.4. If β does not depend on
t, we obtain W (t, s) = S(t − s) for a C0–semigroup S(·) whose generator can be
described precisely.

Our main interest, however, is directed to spectral and asymptotic properties
of the evolution family W (·, ·) in the case of a fertility rate β which is p-periodic
in t. First, in Proposition 2.1, we extend a perturbation theorem for the essential
spectral radius due to J. Voigt, [32], to our situation. To apply this result, we need
the Dyson-Phillips expansion (2.4) of W (t, s) and certain regularity properties of
A(·). As a consequence, we can estimate in Theorem 4.8 the essential spectral
radius re(W (p, 0)) of the monodromy operator W (p, 0). For instance, if am < ∞,
then re(W (p, 0)) = 0 and the spectrum of W (p, 0) consists of a sequence of finite
eigenvalues accumulating at 0. The implications of this result to the asymptotic
behavior of W (t, s) are described in Corollary 2.2 and Theorem 4.8. Finally, in the
autonomous case we recover results from [8], [19], [24], [30], and [31]. In particu-
lar, if β is strictly positive, then (after rescaling) the solution semigroup (S(t))t≥0

converges exponentially to the projection on the unique positive stationary solu-
tion, see Remark 4.9. We point out that such results are the starting point for the
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investigation of the asymptotic behaviour of nonlinear versions of (P) by means
of the principle of linearized stability (see [22], [35], and the references therein for
population equations without diffusion).

Our paper is organized in decreasing order of generality. First, in Section 2, we
study the perturbation of a (resolvent positive) Hille-Yosida operator by a certain
class of time dependent unbounded perturbations and exhibit conditions which
allow to estimate the essential spectral radius of the perturbed evolution family. In
Section 3, we consider the Hille-Yosida operator GV related to an evolution family
U(·, ·) and a Miyadera perturbation V (·). Using GV and extrapolation methods, we
solve a Cauchy problem with boundary perturbation, (3.6), which is an abstract
version of (P). The results of Section 2 and 3 are applied to (P) in the last section.

2. Perturbation of the essential spectral radius. We first recall some prop-
erties of Hille-Yosida operators and extrapolation spaces. For more details and
proofs we refer to [18], see also [3, Chap.V] and the references therein. A linear
operator (A,D(A)) on a Banach space X is called a Hille-Yosida operator if there
are constants M ≥ 1 and w ∈ R such that

(w,∞) ⊂ ρ(A) and ‖(λ− w)nR(λ,A)−n‖ ≤M for all λ > w and n ∈ N. (2.1)

It is well-known that the part A0 of A in X0 := D(A) generates a C0–semigroup
(T0(t))t≥0 on X0. Also, the resolvent R(λ,A0) is the restriction of R(λ,A) to X0

for λ ∈ ρ(A) = ρ(A0). We define on X0 the norm ‖x‖−1 := ‖R(λ,A0)x‖ for a fixed
λ ∈ ρ(A) (different λ ∈ ρ(A) yield equivalent norms). The completion X−1 of X0

with respect to ‖ · ‖−1 is called extrapolation space. The extrapolated semigroup
(T−1(t))t≥0 is the unique continuous extension of (T0(t))t≥0 to X−1. It is strongly
continuous and its generator A−1 ∈ L(X0, X−1) is the unique continuous extension
of A0. Moreover, X is continuously embedded in X−1 and R(λ,A−1) is an extension
of R(λ,A) for λ ∈ ρ(A−1) = ρ(A). Finally, A0 and A are the parts of A−1 in X0

and X, respectively.

It follows from [18, Prop. 3.3] that we have
∫ t
s
T−1(t− τ)f(τ) dτ ∈ X0 and∥∥∥∥∫ t

s

T−1(t− τ)f(τ) dτ

∥∥∥∥
X0

≤M
∫ t

s

ew(t−τ)‖f(τ)‖X dτ (2.2)

for all f ∈ L1
loc(R+, X) and some constant M (where we may and shall assume

that this constant coincides with the one in (2.1)). This estimate is crucial for our
analysis.

A family (U(t, s))(t,s)∈D of bounded linear operators on a Banach space Y is
called evolution family if

(a) U(t, r)U(r, s) = U(t, s) and U(s, s) = Id for t, r, s ∈ I with t ≥ r ≥ s and
(b) D 3 (t, s) 7→ U(t, s) is strongly contiunous,

where D = {(t, s) ∈ I2 : t ≥ s} for an interval I ⊆ R. The exponential growth
bound ω(U) of U(·, ·) is defined by

ω(U) := inf{w ∈ R : there is Mw ≥ 1 with ‖U(t, s)‖ ≤Mwe
w(t−s) for (t, s) ∈ D}.

The evolution family is said to be exponentially bounded if ω(U) <∞ and positive
if Y is a Banach lattice and U(t, s) is a positive operator for (t, s) ∈ D. In the
remainder of this section we let I = R+.

We now consider a perturbation B(·) ∈ Cb(R+,Ls(X0, X)), the space of strongly
continuous, uniformly bounded operator–valued functions. Then, by [25, Thm. 2.3],
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there is a unique evolution family (U(t, s))t≥s≥0 on X0 satisfying

U(t, s)x = T0(t− s)x+

∫ t

s

T−1(t− τ)B(τ)U(τ, s)x dτ, t ≥ s ≥ 0, x ∈ X0. (2.3)

Further, U(t, s) is given by the Dyson-Phillips expansion

U(t, s) =

∞∑
n=0

Un(t, s), t ≥ s ≥ 0, (2.4)

where the series converges in L(X0) uniformly for 0 ≤ s ≤ t ≤ b and

U0(t, s) = T0(t− s), Un+1(t, s)x =

∫ t

s

T−1(t− τ)B(τ)Un(τ, s)x dτ, x ∈ X0.

Also, ‖U(t, s)‖ ≤Me(w+Mc)(t−s) for t ≥ s ≥ 0 and c := supτ≥0 ‖B(τ)‖L(X0,X).
If B(t) = B(t+ p) for some p > 0 and all t ≥ 0, the expansion (2.4) implies that

U(t+ p, s+ p) = U(t, s) for t ≥ s ≥ 0, that is, (U(t, s))t≥s≥0 is p–periodic. Finally,
if B(t) ≡ B, then U(t, s) = S(t− s) for a C0–semigroup (S(t))t≥0 generated by

C = A−1 +B with D(C) = {x ∈ X0 : A−1x+Bx ∈ X0}, (2.5)

see [19, Thm. 3.6]. We point out that a variety of closely related perturbation
results can be found in the literature and refer to the bibliography of [19], [25], [30],
and [31].

Next, we adopt Voigt’s perturbation result [32, Thm. 2.2] for the essential spec-
tral radius of a semigroup to our situation. To that purpose, we recall some defi-
nitions. Let Rn(t, s) :=

∑∞
k=n Uk(t, s) be the nth remainder of the expansion for

U(t, s). Notice that

Rn+1(t, s)x =

∫ t

s

T−1(t− τ)B(τ)Rn(τ, s)x dτ, t ≥ s ≥ 0, x ∈ X0.

For a linear operator C on a Banach space Y , a complex number λ is called an
eigenvalue of finite algebraic multiplicity of C if λ is an isolated point of σ(C) and
a pole of R(·, C) such that the residue of R(·, C) has finite dimensional range, see
e.g. [12, §XV.2] or [17, A-III]. The essential spectral radius of C ∈ L(Y ) is defined
by

re(C) := sup{|λ| : λ ∈ σ(C) is not an eigenvalue of finite algebraic multiplicity}.

Due to [12, XI.5.3, XI.8.4], re(C) coincides with the spectral radius of the canonical
image of C in the algebra L(Y ) modulo the ideal of compact operators. Further,
the set σ(C) ∩ {|λ| > re(C)} consists of at most countably many eigenvalues of
finite algebraic multiplicity which can only accumulate at the circle |λ| = re(C).

An operator C ∈ L(Y ) is called strictly power compact if there is j ∈ N such
that (CS)j is compact for all S ∈ L(Y ). Of course, a compact operator is strictly
power compact.

Proposition 2.1. Assume that A is a Hille-Yosida operator on X and B(·) ∈
Cb(R+,Ls(X0, X)). Let Rn(tm, s) be strictly power compact for some n ∈ N, s ≥ 0,
and all tm ≥ s with tm →∞ as m→∞. Then, for all ε > 0, there is Tε > 0 such
that

re(U(tm, s)) ≤ ewε(tm−s) for tm − s ≥ Tε, (2.6)

where wε := ω(T0) + ε if ω(T0) > −∞ and wε → −∞ as ε↘ 0 if ω(T0) = −∞.
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Proof. Let c = supτ≥0 ‖B(τ)‖L(X0,X) and w′ε := wε − ε
2 . Using (2.2), it is straight-

forward to show ‖Uk(t, s)‖ ≤ Mk+1
ε ck(t − s)kew′ε(t−s) 1

k! for t ≥ s ≥ 0 and k ∈ N,
see the proof of [25, Thm. 2.3]. Hence, there is Tε > 0 such that∥∥∥∥∥

n−1∑
k=0

Uk(t, s)

∥∥∥∥∥ ≤ ewε(t−s) for t− s ≥ Tε.

Now [32, Cor. 1.4] implies re(U(tm, s)) ≤ ewε(tm−s) for tm − s ≥ Tε.

In the autonomous or periodic case the above result has important consequences
for the asymptotic behaviour of the evolution family (U(t, s))t≥s≥0. Recall that an
evolution family (V (t, s))t≥s≥0 in L(Y ) has an exponential splitting with exponents
α < β if there exists projections P (·) ∈ Cb(R+;Ls(Y )) and a constant N ≥ 1 such
that

(a) P (t)V (t, s) = V (t, s)P (s) for t ≥ s ≥ 0;
(b) the restriction VQ(t, s) : Q(s)X → Q(t)X is invertible for t ≥ s ≥ 0, where

Q(t) := Id− P (t);
(c) ‖V (t, s)P (s)‖ ≤ Neα(t−s) and ‖(VQ(t, s)Q(s))−1‖ ≤ Ne−β(t−s) for t ≥ s ≥ 0.

Corollary 2.2. Let B(t) = B(t + p) for some p > 0 and all t ≥ 0. Assume that
the hypotheses of Proposition 2.1 hold for s = 0, tm = mp, m ∈ N, and a natural
number n. Then ωe ≤ ω(T0), where ωe is given by re(U(p, 0)) = eωep. Moreover, for
β > α > ωe such that |σ(U(p, 0))|∩[eαp, eβp] = ∅, the evolution family (U(t, s))t≥s≥0

has an exponential splitting with exponents α < β and projections P (s) satisfying
dim kerP (s) = k < ∞ and P (s + p) = P (s) for s ≥ 0. Finally, if B(t) = B for
t ≥ 0, then P (t) = P (0) and re(S(t)) = eωet for t > 0, where S(t− s) = U(t, s).

Proof. By Proposition 2.1, for ε > 0 there exists mε ∈ N such that

re(U(p, 0))m = re(U(mp, 0)) ≤ ewεmp for m ≥ mε.

Hence, re(U(p, 0)) ≤ eω(T0)p. Let β > α > ωe such that |σ(U(p, 0))| ∩ [eαp, eβp] = ∅.
As in [14, Lemma 7.2.2], we see that σ(U(p, 0))\{0} = σ(U(s+p, s))\{0} for s ≥ 0.
In particular, the circle Γ = {λ ∈ C : |λ| = eγp} is contained in ρ(U(s + p, s)) for
γ ∈ (α, β) and s ≥ 0. As in [14, Thm. 7.2.3], it can be shown that

P (s)x :=
1

2πi

∫
Γ

R(λ,U(s+ p, s))x dλ, s ≥ 0, x ∈ X0, (2.7)

defines projections P (s) on X0 yielding an exponential splitting for U(t, s) with
exponents α < β. Clearly, P (·) is p-periodic (and constant if B(·) is constant).
Finally, kerP (0) is the span of the eigenspaces corresponding to the spectral set
σ(U(p, 0))∩{λ : |λ| ≥ eγp}. Since UQ(t, 0) : kerP (0)→ kerP (t) is an isomorphism,
the dimension of kerP (t) is constant and finite. The last assertion is shown in [32,
Lemma 2.1].

In order to apply this corollary, we verify compactness of the remainder R3(t, s)
for t ≥ s ≥ 0 assuming the following hypotheses which hold in our application
in Section 4. Recall that an operator C on a Banach lattice Y is called resolvent
positive if (w,∞) ⊆ ρ(C) and R(λ,C) ≥ 0 for λ > w. Clearly, if C generates a
C0–semigroup (S(t))t≥0 on Y , then S(·) is positive if and only if C is resolvent
positive. Also, Y has order continuous norm if every decreasing net in the positive
cone Y+ with infimum 0 converges to 0 in norm. For instance, Lp–spaces have order
continuous norm if 1 ≤ p <∞, [26, p.92].
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(H1) A is a resolvent positive Hille-Yosida operator on a Banach lattice X with or-
der continuous norm. The perturbations satisfy 0 ≤ B(·) ∈ Cb(R+,L(X0, X))
and the mapping t 7→ B(t0)T0(t) ∈ L(X0, X) is continuous for t > 0 and all
t0 ≥ 0.

(H2) For all ε > 0, there is a positive, compact operator Kε : X0 → X such that
0 ≤ B(t)T0(ε) ≤ Kε for t ≥ 0 and the mapping t 7→ KεT0(t) ∈ L(X0, X) is
continuous for t > 0.

Remark 2.3. Let the first sentence in (H1) hold. Then, by [5, Prop. A], X0 =

D(A) is a sublattice (even an ideal) of X. Hence, A0 is resolvent positive and T0(·)
is positive.

Proposition 2.4. Let A(1) and A(2) be Hille-Yosida operators with the same do-

main on a Banach lattice X with order continuous norm and let (T
(k)
0 (t))t≥0,

k = 1, 2, be the corresponding C0–semigroups on X0. Assume that 0 ≤ R(λ,A(1)) ≤
R(λ,A(2)) for λ > w. Then the following assertions hold.

(a) 0 ≤
∫ t

0
T

(1)
−1 (t − τ)f(τ) dτ ≤

∫ t
0
T

(2)
−1 (t − τ)f(τ) dτ for 0 ≤ f ∈ L1

loc(R+, X)
and t ≥ 0.

(b) Let 0 ≤ B(·) ∈ Cb(R+,Ls(X0, X)) and let (U (k)(t, s))t≥s≥0, k = 1, 2, be

the evolution families satisfying (2.3). Then 0 ≤ U (1)(t, s) ≤ U (2)(t, s) for
t ≥ s ≥ 0.

Proof. (a) Set f(λ) := R(λ,A(2))x − R(λ,A(1))x for x ∈ X+ and λ > w. Then
(−1)nf (n)(λ) ≥ 0 for n ∈ N and λ > w. Therefore, [4, Thm. 5.6] implies that
f(λ) =

∫∞
0
e−λt dαx(t) for a positive, increasing function αx : R+ → X with

αx(0) = 0. Further, by [4, 5.7,6.1] there exist unique increasing, strongly continuous
families (S(k)(t))t≥0 of positive operators on X such that S(k)(0) = 0 and

R(λ,A(k))x =

∫ ∞
0

e−λt dS(k)(t)x =

∫ ∞
0

λe−λtS(k)(t)x dt

for k = 1, 2, x ∈ X, and λ > max{w, 0}. Hence, αx(t) = S(2)(t)x− S(1)(t)x ≥ 0 by
the uniqueness of the Laplace-Stieltjes transform. On the other hand,

R(λ,A(k))x = R(λ,A
(k)
−1)x =

∫ ∞
0

e−λtT
(k)
−1 (t)x dt =

∫ ∞
0

λe−λt
∫ t

0

T
(k)
−1 (s)x ds dt

for x ∈ X and λ > w. Due to [18, Prop. 3.3], the integral with respect to dt on the

right hand side converges in X. Thus, S(k)(t) =
∫ t

0
T

(k)
−1 (s)x ds for x ∈ X by the

uniqueness of the Laplace transform. Now, (a) follows easily.
(b) is an immediate consequence of the expansion (2.4), Remark 2.3, and (a).

Throughout the remainder of this section, we assume (H1) and denote by
(U(t, s))t≥s≥0 the evolution family solving (2.3). Also, C is a positive constant
depending on b where 0 ≤ t−s ≤ b. We use the approximation R2,ε(t, s) of R2(t, s)
defined by the strong integral

R2,ε(t, s) :=

∫ t−ε

s+ε

T−1(t− τ)B(τ)

∫ τ−ε

s

T−1(τ − σ)B(σ)U(σ, s) dσ dτ

for ε ≥ 0 and t ≥ s ≥ 0 with t− s ≥ 2ε. Observe that R2(t, s) = R2,0(t, s).

Lemma 2.5. Assume (H1). Then B(t)R2,ε(t, s) → B(t)R2(t, s) as ε ↘ 0 in
L(X0, X) uniformly for (t, s) in sets {(t, s) : b ≥ t − δ ≥ s ≥ 0, δ > 0}. Further,
the function t 7→ B(t)R2(t, s) ∈ L(X0, X) is continuous for t ≥ s.
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Proof. First notice that

R2(t, s)x−R2,ε(t, s)x

=

∫ t

t−ε
T−1(t− τ)B(τ)

∫ τ

s

T−1(τ − σ)B(σ)U(σ, s)x dσdτ

+ T0(t− s− ε)
∫ s+ε

s

T−1(s+ ε− τ)B(τ)

∫ τ

s

T−1(τ − σ)B(σ)U(σ, s)x dσdτ

+ T0(ε)

∫ t−ε

s+ε

T−1(t− ε− τ)B(τ)

∫ τ

τ−ε
T−1(τ − σ)B(σ)U(σ, s)x dσdτ

=: I1 + I2 + I3

for x ∈ X0 and t− s ≥ 2ε. Now the estimate (2.2) yields

‖I1‖X0
≤ C

∫ t

t−ε

∥∥∥∥∫ τ

s

T−1(τ − σ)B(σ)U(σ, s)x dσ

∥∥∥∥
X0

dτ ≤ C ‖x‖X0

∫ t

t−ε
(τ − s) dτ,

‖I2‖X0
≤ C

∫ s+ε

s

∥∥∥∥∫ τ

s

T−1(τ − σ)B(σ)U(σ, s)x dσ

∥∥∥∥
X0

dτ

≤ C ‖x‖X0

∫ s+ε

s

(τ − s) dτ,

‖I3‖X0
≤ C

∫ t−ε

s+ε

∥∥∥∥∫ τ

τ−ε
T−1(τ − σ)B(σ)U(σ, s)x dσ

∥∥∥∥
X0

dτ ≤ C‖x‖X0
(t− s) ε.

So the first claim is shown. By a similar argument follows limt↘sB(t)R2(t, s) =
0 in L(X0, X). Thus it remains to prove that the mapping [s + δ,∞) 3 t 7→
B(t)R2,ε(t, s) ∈ L(X0, X) is continuous, where δ ≥ 2ε > 0. For t ≥ r ≥ s+ 2ε > s
and x ∈ X0, we have

B(t)R2,ε(t, s)x−B(r)R2,ε(r, s)x

= (B(t)−B(r))R2,ε(t, s)x

+B(r)T0(ε)

∫ t−ε

r−ε
T−1(t− ε− τ)B(τ)

∫ τ−ε

s

T−1(τ − σ)B(σ)U(σ, s)x dσdτ

+B(r)

∫ r−ε

s+ε

(T−1(t− τ)− T−1(r − τ))B(τ)

∫ τ−ε

s

T−1(τ − σ)B(σ)U(σ, s)x dσdτ

=: J1 + J2 + J3.

Since R2,ε(t, s) is uniformly bounded for b ≥ t ≥ s ≥ 0 and B(·) is norm continuous,
we obtain ‖J1‖X → 0 uniformly in x as (t− r)→ 0. Further, by (2.2),

‖J2‖X ≤ C
∥∥∥∥∫ t−ε

r−ε
T−1(t− ε− τ)B(τ)

∫ τ−ε

s

T−1(τ − σ)B(σ)U(σ, s)x dσdτ

∥∥∥∥
X0

≤ C
∫ t−ε

r−ε

∥∥∥∥T0(ε)

∫ τ−ε

s

T−1(τ − ε− σ)B(σ)U(σ, s)x dσ

∥∥∥∥
X0

dτ

≤ C (t− r) ‖x‖X0
and

‖J3‖X ≤ ‖B(r)(T0(t− r + ε)− T0(ε))‖L(X0,X)

∥∥∥∥∫ r−ε

s+ε

T−1(r − ε− τ)B(τ)T0(ε)

·
∫ τ−ε

s

T−1(τ − ε− σ)B(σ)U(σ, s)x dσdτ

∥∥∥∥
X0

≤ C ‖x‖X0 ‖B(r)(T0(t− r + ε)− T0(ε))‖L(X0,X).
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Hence, the second assertion follows from (H1).

Proposition 2.6. If (H1) and (H2) hold, then R3(t, s) is compact for all t ≥ s ≥ 0.

Proof. We first show that B(t)R2,ε(t, s) is compact. Fix ε > 0 and t − s ≥ 2ε.
Then,

B(t)R2,ε(t, s)x = B(t)T0(ε)

∫ t−s−2ε

0

T−1(τ)B(t− τ − ε)T0(ε)

·
∫ t−s−τ−2ε

0

T−1(σ)B(t− τ − σ − 2ε)U(t− τ − σ − 2ε, s)x dσdτ

=: B(t)T0(ε)L1(ε, t, s)(B(·+ ε)T0(ε)L2(ε, t, s)x) (2.8)

for x ∈ X0 and linear operators Lk(ε, t, s) given by

L1(ε, t, s) : L1([s, t], X)→ X0; f 7→
∫ t−s−2ε

0

T−1(τ)f(t− τ − 2ε) dτ

L2(ε, t, s) : X0 → L1([s, t], X0);

(L2(ε, t, s)x)(r) =

∫ r−s

0

T−1(σ)B(r − σ)U(r − σ, s)x dσ.

By means of (2.2) and Proposition 2.4 one sees that L1(ε, t, s) and L2(ε, t, s) are
bounded and positive operators. Also, assumption (H2) implies

0 ≤ B(t)T0(ε)L1(ε, t, s)f ≤ KεL1(ε, t, s)f
0 ≤ B(r + ε)T0(ε) (L2(ε, t, s)x)(r) ≤ Kε (L2(ε, t, s)x)(r)

(2.9)

for 0 ≤ f ∈ L1([s, t], X), 0 ≤ x ∈ X0, and r ∈ [s, t]. Since Kε is compact, the
operator KεL1(ε, t, s) : L1([s, t], X) → X is compact. To show that KεL2(ε, t, s) :
X0 → L1([s, t], X) is compact, consider xn ∈ X0 with ‖xn‖ ≤ 1. Set fn :=
L2(ε, t, s)xn. Then, by (2.2),

‖fn(r)‖X0 =

∥∥∥∥∫ r

s

T−1(r − σ)B(σ)U(σ, s)xn dσ

∥∥∥∥
X0

≤ C (r − s). (2.10)

Since Kε ∈ L(X0, X) is compact, we can choose for each rational r ∈ [s, t] a
subsequence Φr(n) so that KεfΦr(n) converges to some g(r) ∈ X. By taking the
diagonal sequence Φ(n), we obtain

KεfΦ(n)(r) = Kε

∫ r

s

T−1(r − σ)B(σ)U(σ, s)xΦ(n) dσ → g(r) as n→∞ (2.11)

for r ∈ Q ∩ [s, t]. Further, for t ≥ r ≥ r′ ≥ s+ δ > s, one computes∥∥∥∥∥Kε

∫ r−δ

s

T−1(r − σ)B(σ)U(σ, s)xn dσ −Kε

∫ r′−δ

s

T−1(r′ − σ)B(σ)U(σ, s)xn dσ

∥∥∥∥∥
X0

≤ ‖Kε‖

∥∥∥∥∥
∫ r−δ

r′−δ
T−1(r − σ)B(σ)U(σ, s)xn dσ

∥∥∥∥∥
+‖Kε(T0(r − r′ + δ)− T0(δ))‖

∥∥∥∥∥
∫ r′−δ

s

T−1(r′ − δ − σ)B(σ)U(σ, s)xn dσ

∥∥∥∥∥
X0

≤ C (‖Kε‖ (r − r′) + ‖Kε(T0(r − r′ + δ)− T0(δ))‖).
Therefore, [s, t] 3 r 7→ Kεfn(r) is continuous uniformly in n by (H2) and (2.10).
Using this fact and (2.11), we find g(r) ∈ X so that

KεfΦ(n)(r)→ g(r) as n→∞ for all r ∈ [s, t].
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So from (2.10) and the dominated convergence theorem follows that limnKεfΦ(n) =

g in L1([s, t], X); that is, KεL2(ε, t, s) is compact. Now, due to (2.8), (2.9), and
the order continuity of X, we can apply the Dodds-Fremlin-Aliprantis-Burkinshaw
theorem, [36, Thm. 124.3], to derive compactness of B(t)R2,ε(t, s).

Hence, Lemma 2.5 implies that B(t)R2(t, s) is compact for t ≥ s ≥ 0. Further,
we have

R3(t, s)x =

∫ t

s

T−1(t− τ)B(τ)R2(τ, s)x dτ

for x ∈ X0, t ≥ s ≥ 0. Let xn ∈ X0 with ‖xn‖ ≤ 1. Set gn(τ) := B(τ)R2(τ, s)xn
for τ ∈ [s, t]. As above we can find a subsequence so that gnk

(r) converges in X
for rational r. Due to Lemma 2.5, the function [s, t] 3 τ 7→ gn(τ) is continuous
uniformly in n and, hence, gnk

(τ) converges for all τ . Consequently, the sequence
(gnk

) converges in L1([s, t], X) by Lebesgue’s theorem. Finally, an application of
(2.2) shows that R3(t, s)xnk

converges in X0. As a result, R3(t, s) is compact.

Remark 2.7. The above proofs show that the conclusion of Proposition 2.6 holds
under weaker regularity assumptions in (H1) and (H2). For instance, it suffices
to suppose that B(·) is strongly continuous and that the mappings t 7→ B(t), t 7→
B(ε)T (t), and t 7→ KεT (t) are continous from the right in L(X0, X) for a.e. t > 0
and each ε > 0.

3. Mild solutions for a class of evolution equations with boundary per-
turbation. As a preparation for our investigation of an age–structured population
equation in the next section, we now study mild solutions of a certain class of evo-
lution equations, see (3.6) below. Notice that some of the notation we use in this
and the following section differs from the one adopted in Section 2.

Let (U(a, r))(a,r)∈D be an exponentially bounded evolution family on a Banach
space X, where I ∈ {[0, am],R+}. In particular, for w > ω(U) there isM = Mw ≥ 1
such that ‖U(a, r)‖ ≤ Mew(a−r) for (a, r) ∈ D. Observe that ω(U) = −∞ if I is
compact. To simplify notation, we set U(a, r) := 0 for 0 ≤ a < r. Further, we
assume that there are operators (V (a), D(V (a))), a ∈ I, satisfying the Miyadera
condition:

(M) V (a) is closed for a.e. a ∈ I. For x ∈ X and r ∈ I, we have U(a, r)x ∈ D(V (a))
for a.e. a ∈ I ∩ [r,∞), V (·)U(·, r)x is measurable, and∫ α

0

χI(a+ r)‖V (a+ r)U(a+ r, r)x‖ da ≤ γ‖x‖

for constants α ∈ (0,∞] and γ ∈ [0, 1).

(See [23] for a somewhat weaker condition.) On the space E := L1(I,X), we define
the multiplication operator V f := V (·)f(·) with domain D(V ) := {f ∈ E : f(a) ∈
D(V (a)) for a.e. a ∈ I, V (·)f(·) ∈ E}. We also need the evolution semigroup
(T0(t))t≥0 on E defined by

(T0(t)f) (a) = χI(a− t)U(a, a− t)f(a− t), t ≥ 0, a ∈ I, (3.1)

see [16, 23, 27] and the references therein. It is easy to show that the semigroup T0(·)
is strongly continuous and ω(T0) = ω(U). We denote its generator by (G0, D(G0)).
Due to hypothesis (M) and [23, Thm. 3.4, Cor. 3.5], the operator

GV := G0 − V with D(GV ) := D(G0) ⊆ D(V ) (3.2)

generates an evolution semigroup (TV (t))t≥0 on E with a corresponding exponen-
tially bounded evolution family (UV (a, r))(a,r)∈D on X. Moreover, for x ∈ X and
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r ∈ I we have UV (a, r)x ∈ D(V (a)) for a.e. a ∈ I ∩ [r,∞), V (·)UV (·, r)x is locally
integrable, and

UV (a, r)x = U(a, r)−
∫ a

r

U(a, τ)V (τ)UV (τ, r)x dτ (3.3)

UV (a, r)x = U(a, r)−
∫ a

r

UV (a, τ)V (τ)U(τ, r)x dτ (3.4)

for all x ∈ X and (a, r) ∈ D. The evolution family UV (·, ·) is uniquely determined
by (3.4).

It is known that the domain D(G0) (and hence D(GV )) consists of continuous
functions vanishing at a = 0, [23, Prop. 2.1]. In order to consider functions with
f(0) 6= 0, we introduce an extension G of G0. Let eλ(a)x := e−λaU(a, 0)x and
eVλ (a)x := e−λaUV (a, 0)x for λ ∈ C, x ∈ X, and a ∈ I. We define for a fixed
ω > max{ω(U), ω(UV )} =: ω1 the operator

D(G) := {f = f0 + eω(·)x : f0 ∈ D(G0), x ∈ X}, Gf := G0f0 + ωeω(·)x, (3.5)

on E. Clearly, f0 and x are uniquely determined by f ∈ D(G). (See Proposition 4.5
for the motivation of this definition.)

Concerning the orbits eλ(·)x and eVλ (·)x, we need the following result, where
eλ denotes the operator in L(X,E) given by x 7→ eλ(·)x for Reλ > ω(U) (and
analogously for eVλ ).

Lemma 3.1. Assume that (U(a, r))(a,r)∈D is an exponentially bounded evolution
family on a Banach space X and that the operators V (a), a ∈ I, satisfy (M). Then
we have

(a) eλX ⊆ D(V ) and V eλ ∈ L(X,E) for Reλ > ω(U) and x ∈ X;
(b) eλx ∈ D(G) and Geλx = λeλx for Reλ > ω(U) and x ∈ X;
(c) eVλ = eλ −R(λ,GV )V eλ for Reλ > ω1;
(d) ker(λ− (G− V )) = {eVλ x : x ∈ X} for Reλ > ω1 and x ∈ X.

Proof. (a) We consider I = R+ since the proof carries over to finite I. For Reλ >
w > ω(U), condition (M) implies∫ ∞

0

‖V (a)eλ(a)x‖ da

=

∞∑
n=0

e−Reλnα
∫ α

0

e−Reλa‖V (a+ nα)U(a+ nα, nα)U(nα, 0)x‖ da

≤ γmax{1, e−Reλα}
∞∑
n=0

e−Reλnα‖U(nα, 0)x‖

≤Mγmax{1, e−Reλα}(1− e(w−Reλ)α)−1 ‖x‖.

(b) Let f = eλ(·)x− eµ(·)x and ϕ(a) = e−λa − e−µa for Reλ,Reµ > ω(U). Then

T0(t)f(a)− f(a) = (χI(a− t)ϕ(a− t)− ϕ(a))U(a, 0)x

for a ∈ I and t ≥ 0. This implies f ∈ D(G0) and G0(eλ(·)x− eµ(·)x) = λeλ(·)x−
µeµ(·)x. Considering eλ = eλ − eω + eω yields (b).
(c) follows from (3.4) and

R(λ,GV )f(a) =

∫ ∞
0

χI(a− t)e−λtUV (a, a− t)f(a− t) dt

=

∫ a

0

e−λ(a−t)UV (a, t)f(t) dt.
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(d) Assertion (b) and (c) and (3.2) imply that eVλ x ∈ ker(λ − (G − V )) for x ∈ X
and Reλ > ω1. Conversely, if f ∈ ker(λ− (G− V )) then, by part (b) and (c),

f − eVλ f(0) = (f − eωf(0)) + (eωf(0)− eλf(0)) + (eλf(0)− eVλ f(0)) ∈ D(G0).

Thus, 0 = (λ−GV )(f − eVλ f(0)). This yields f = eVλ f(0) since λ ∈ ρ(GV ).

Remark 3.2. By Lemma 3.1(c) we have (G−V )f = GV f1+ωeVω f(0) for f ∈ D(G)
and f1 = f0+R(ω,GV )V eωf(0) ∈ D(G0) = D(GV ). Observe that G−V considered
as an operator from D(GV )×eωX ⊆ E×eωX to E is closed if E×eωX is endowed
with the norm ‖f1‖+ ‖x‖.

Let B(·) ∈ Cb(R+;Ls(E,X)). On E = L1(I,X) we now investigate the Cauchy
problem with boundary perturbation u′(t) = (G− V )u(t),

u(s) = f ∈ E,
u(t, 0) = B(t)u(t) ∈ X, t ≥ s ≥ 0.

(3.6)

A classical solution of (3.6) is a function u ∈ C1([s,∞), E) such that u(t) ∈ D(G)
and (3.6) holds for all t ≥ s. We are also looking for mild solutions of (3.6), that
is, functions u ∈ C([s,∞), E) satisfying

∫ t
s
u(τ) dτ ∈ D(G),

u(t)− f = (G− V )
∫ t
s
u(τ) dτ,

(
∫ t
s
u(τ) dτ)(0) =

∫ t
s
B(τ)u(τ) dτ, t ≥ s ≥ 0,

(3.7)

see [13] and the references therein. It is straightforward to verify that a classical
solution is also a mild solution.

To find mild solutions, we proceed as in [19] and [24]. On the product space
E := X × E endowed with the maximum norm we define the matrix operators

B(t) :=

(
0 B(t)
0 0

)
and GV :=

(
0 −δ0
0 G− V

)
,

where D(GV ) := {0} ×D(G). Notice that D(GV ) = {0} × E =: E0. To show that
GV is a Hille-Yosida operator, we need the bounded operators on E given by

R(λ) :=

(
0 0
eVλ R(λ,GV )

)
for Reλ > max{ω(U), ω(UV )} = ω1.

Lemma 3.3. Assume that (U(a, r))(a,r)∈D is an exponentially bounded evolution
family on a Banach space X and that the operators V (a), a ∈ I, satisfy (M). Then
GV is a Hille-Yosida operator and R(λ,GV ) = R(λ) for Reλ > ω1.

Proof. From D(GV ) = D(G0) and Lemma 3.1(d) we easily derive R(λ)E ⊆ D(GV )
and (λ − GV )R(λ) = Id; that is, λ − GV is surjective for Reλ > ω1. On the other
hand, Lemma 3.1(c) implies

R(ω)(ω − GV )

(
0

f

)
=

(
0 0
eVω R(ω,GV )

)(
f(0)

(ω −GV )f0 + V eωf(0)

)
=

(
0

f

)
for f = f0 + eωf(0) ∈ D(G). Thus, R(ω) = R(ω,GV ) and GV is closed. Moreover,
R(λ)(λ − GV )

(
0
f0

)
=
(

0
f0

)
for f0 ∈ D(G0). If (λ − GV )

(
0
f

)
= 0 for some f ∈ D(G),

then f(0) = 0. Therefore, λ− GV is injective for Reλ > ω1. Consequently, R(λ) =
R(λ,GV ) for Reλ > ω1. Finally, we have

R(λ)n =

(
0 0
R(λ,GV )n−1eVλ R(λ,GV )n

)
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and ‖R(λ,GV )n−1eVλ (·)x‖E ≤ M
(λ−w)n−1 ‖eVλ (·)x‖E ≤ M2

(λ−w)n ‖x‖ for λ > w > ω1.

So GV is a Hille-Yosida operator on E .

As a consequence, the part GV,0 in E0 generates a C0–semigroup TV,0(·) in E0. In
particular, we obtain

D(GV,0) = {
(

0
f

)
∈ E0 : f ∈ D(G), f(0) = 0} = {

(
0
f

)
∈ E0 : f ∈ D(G0)} and

GV,0
(

0
f

)
=
(

0
GV f

)
.

Thus, on E we can identify GV,0 and TV,0(·) with GV and TV (·), respectively. More-
over, there exists the extrapolated semigroup TV,−1(·) on E−1 ←↩ E with generator
GV,−1.

We now come to the main result of this section, cf. [19], [24], [30] and [31] for
the autonomous case.

Theorem 3.4. Assume that (U(a, r))(a,r)∈D is an exponentially bounded, evolution
family on a Banach space X and that the operators V (a), a ∈ I, satisfy (M). Let
the operator G on E = L1(I,X) be given by (3.5) and the multiplication operator
V on E be induced by V (·). Finally, suppose B(·) ∈ Cb(R+;Ls(E,X)). Then there
is a unique mild solution u of (3.6) given by u(t) = W (t, s)f for an exponentially
bounded evolution family (W (t, s))t≥s≥0. If B(·) ∈ C1(R+;Ls(E,X)) and f(0) =
B(s)f , then u is a classical solution. In the autonomous case, i.e., B(t) ≡ B, we
have W (t, s) = S(t− s) for a C0–semigroup (S(t))t≥0 generated by

D(GV B) = {f ∈ D(G) : f(0) = Bf} and GV Bf = (G− V )f. (3.8)

Proof. First observe that B(·) ∈ Cb(R+,Ls(E0, E)). Due to Lemma 3.3 and [24,
Thm. 2.3], there exists an exponentially bounded evolution family (W(t, s))t≥s≥0

on E0 satisfying

W(t, s)

(
0

f

)
= TV,0(t)

(
0

f

)
+

∫ t

s

TV,−1(t− τ)B(τ)W(τ, s)

(
0

f

)
dτ

for f ∈ E. After identifying (W(t, s))t≥s≥0 with an evolution family (W (t, s))t≥s≥0

on E, we derive(
0

W (t, s)f

)
=

(
0

TV (t− s)f

)
+

∫ t

s

TV,−1(t− τ)

(
B(τ)W (τ, s)f

0

)
dτ. (3.9)

We evaluate the integral in (3.9) and obtain∫ t

s

TV,−1(t− τ)

(
B(τ)W (τ, s)f

0

)
dτ

=

∫ t

s

TV,−1(t− τ)(λ− GV )R(λ,GV )

(
B(τ)W (τ, s)f

0

)
dτ

= (λ− GV,−1)

∫ t

s

TV,−1(t− τ)

(
0

eVλB(τ)W (τ, s)f

)
dτ

= (λ− GV,−1)

(
0∫ t

s
TV (t− τ)eVλB(τ)W (τ, s)f dτ

)
=: (λ− GV,−1)

(
0

g

)
for λ > ω1. On the other hand, from (3.9) follows that (λ− GV,−1)

(
0
g

)
∈ E0. Since

GV,0 is the part of GV,−1 in E0, we have
(

0
g

)
∈ D(GV,0), that is, g ∈ D(G0). Then

(3.9) yields

W (t, s)f = TV (t− s)f + (λ−GV )

∫ t

s

TV (t− τ)eVλB(τ)W (τ, s)f dτ (3.10)
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for f ∈ E and t ≥ s ≥ 0. Now [13, Thm. 3.2] shows that the continuous function
u(·) = W (·, s)f satisfies (3.10) if and only if it is a mild solution of (3.6). (Here
one has to use the description of ker(λ− (G− V )) given in Lemma 3.1(d).)

To show uniqueness, let v, w ∈ C([s,∞), X) satisfy (3.7). Reversing the above
arguments, we see that (3.9) holds with W (·, s)f replaced by v(·) and w(·), respec-
tively. Then (2.2) and Gronwall’s inequality imply v = w.

Now let B(·) ∈ C1(R+,Ls(E,X)) and f(0) = B(s)f . On E we define the
operators A(t) := GV + B(t) with domain D(GV ). Notice that A(s)

(
0
f

)
∈ E0. Due

to [29, Thm. 1.10] (which is a version of Kato’s well-posedness result in the case of
non-dense domains), there exists a function v ∈ C1([s,∞), X) so that v(t) ∈ D(G),
v(s) = f , and

(
0

v′(t)

)
= A(t)

(
0
v(t)

)
for t ≥ s. As a result, v is a classical, and hence

a mild, solution of (3.6). By uniqueness, v(t) = W (t, s)f .
If B(t) ≡ B, then W(t, s) = S(t − s) for a C0–semigroup S(·) on E0 which is

generated by the part GV B of GV,−1 + B in E0, see (2.5). For
(

0
f

)
∈ D(GV B), we

have GV,−1

(
0
f

)
+
(
Bf
0

)
∈ E0, and hence GV,−1

(
0
f

)
∈ E . Since GV is the part of GV,−1

in E , we derive f ∈ D(G) and GV B
(

0
f

)
=
(−f(0)+Bf

(G−V )f

)
∈ E0. After identifying GV B

with GV B on E, this establishes (3.8).

4. A population equation. We now apply the previous results to the equations
(P) introduced in Section 1. On the domain Ω and the coefficients we impose the
following conditions.

(O) Ω ⊆ Rn is a bounded domain with compact C4–boundary ∂Ω, Γi are open
and closed in ∂Ω such that ∂Ω = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅.

(A) akl = alk, bk, c ∈ C1
b (I, C2(Ω,R)) and

∑n
k,l=1 akl(a, x) ηkηl ≥ δ0 |η|2 for η ∈

Rn, a ∈ I, x ∈ Ω, and a constant δ0 > 0.
(B) αk, γ ∈ C1

b (I, C2(Γ1,R)) and
∑n
k=1 αk(a, x)nk(x) ≥ δ1 for a constant δ1 > 0

and (a, x) ∈ I × Γ1, where n(x) is the exterior normal unit vector at x ∈ Γ1.
(V) 0 ≤ µ ∈ Lqloc,u(I, Lp(Ω)) for p > n

2 and q > (1− n
2p )−1.

(V’) In = [0, bn] ↑ I and χIn µ ≥ 0 satisfies (V) for n ∈ N.
(b) 0 ≤ β ∈ BUC(R+ × I, L∞(Ω)).

Here either I = [0, am] for some am > 0 or I = R+, where we set am :=∞. Further
Lqloc,u(I) is the space of uniformly locally q-integrable functions on I endowed with

the norm ‖ϕ‖Lq
loc,u

:= sups,s+1∈I ‖χ[s,s+1]ϕ‖q. Of course, Lq(I) = Lqloc,u(I) if I

is compact. We let ∂t = ∂
∂t , ∂a = ∂

∂a , and ∂k = ∂
∂xk

. On X := L1(Ω), we set

V (a)ϕ := µ(a, ·)ϕ(·) with D(V (a)) = {ϕ ∈ X : µ(a, ·)ϕ(·) ∈ X}. The operators
V (a) induce on E := L1(I × Ω) ∼= L1(I,X) the multiplication operator V = V (·)
with maximal domain. Further, B(t)f :=

∫ am
0

β(t, a, ·)f(a, ·) da, t ≥ 0, defines a
bounded operator from E to X. Clearly, 0 ≤ B(·) ∈ Cb(R+,L(E,X)). To treat
the diffusion part of the equations (P), we define

A(a, x,D) :=

n∑
k,l=1

∂k akl(a, x) ∂l +

n∑
k=1

bk(a, x) ∂k + c(a, x) Id, x ∈ Ω, a ∈ I,

B1(a, x,D) :=

n∑
k=1

αk(a, x) ∂k + γ(a, x) Id, x ∈ Γ1, a ∈ I,
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in the sense of distributions and of trace, respectively. Then the realization A(a)
of A(a, x,D), a ∈ I, on L1(Ω) with mixed boundary conditions is given by

D(A(a)) := {ϕ ∈ L1(Ω) : ϕ ∈W 1,r(Ω) for 1 ≤ r < n
n−1 ; A(a, x,D)ϕ ∈ L1(Ω);

(A(a, x,D)ϕ,ψ) = (ϕ,A′(a, x,D)ψ) for ψ ∈ D(As(a)), 0 < n
2 (1− 1

s ) <∞},
A(a)ϕ := A(a, x,D)ϕ,

see [28, §5.4]. Here A′(a, x,D) is the formal adjoint of A(a, x,D), [28, (5.2)], [2,
§4], and As(a) is the realization of A(a, x,D), a ∈ I, on Ls(Ω), 1 < s < ∞, with
domain

D(As(a)) = {ϕ ∈W 2,s(Ω) : ϕ = 0 on Γ0, B1(a, x,D)ϕ = 0 on Γ1}.

By [28, §5.4], there is a constant d ≥ 0 so that Ad(a) := A(a) − d is invertible
and generates a bounded analytic semigroup on L1(Ω), see also [2]. An inspection
of the proof shows that, due to (O), (A), and (B), the constant d and the type
(K,φ) of Ad(a) do not depend on a ∈ I. Further, in [28, §6.13] the estimate

‖Ad(a)R(λ,Ad(a)) (Ad(a)−1 −Ad(b)−1)‖ ≤ L |a− b| |λ|−ρ (4.1)

is verified for λ ∈ {λ ∈ C : | arg λ| < φ}, a, b ∈ I, and constants L ≥ 0 and
ρ ∈ (0, 1

2 ). (To be precise, in [28, §6.13] only finite intervals I are considered. But
the proofs given there imply that the constants in (4.1) do not depend on I ⊆ R+

if we assume (O), (A), and (B).) Thus, a result of P. Acquistapace and B. Terreni,
see [1, Thm. 2.3], shows that there is an evolution family (U(a, r))(a,r)∈D on L1(Ω)

such that for x ∈ D(A(r)) the function U(·, r)x ∈ C1(I ∩ [r,∞), X) is the unique
solution of the Cauchy problem

w′(a) = A(a)w(a), a ≥ r, w(r) = x. (4.2)

Notice that Ud(a+ t, a) := e−dtU(a+ t, a) solves (4.2) with A(·) replaced by Ad(·).
Moreover, U(a, a − t) maps X into the domain of the fractional power (−Ad(a))θ

and

‖(−Ad(a))θUd(a, a− t)‖ ≤ M ewt t−θ , (4.3)

‖(Ud(a, a− t)− Id)(−Ad(a− t))−θ‖ ≤ M tθ ewt, (4.4)

lim
t→0

1

t
(Ud(a, a− t)− Id)Ad(a− t)−1ϕ = ϕ (4.5)

for (a, a − t) ∈ D, t > 0, ϕ ∈ X, 0 ≤ θ ≤ 1, and constants M,w ∈ R; see [1,
Thm. 2.3], [11, Thm. 2.3], [28, Thm. 6.5,6.6], [3], and the references therein. Next,
we show that U(a, r) is positive using an argument from [3, II.6.4.2,IV.2.4.3].

Lemma 4.1. Assume (O), (A), and (B). Then U(a, r) ≥ 0 for (a, r) ∈ D.

Proof. We have R(λ,A(a)) ≥ 0 for a ∈ I and λ > d by [2, Thm. 10.3]. Hence, for
n ≥ n0 the Yosida approximation An(a) = nA(a)R(n,A(a)) is resolvent positive,
cf. [28, Lemma 6.14]. Also, An(·) is bounded and uniformly Hölder continuous for
fixed n. So, by [3, Thm. II.6.4.2] the evolution family (Un(a, r))(a,r)∈D solving the
Cauchy problem corresponding to An(·) is positive. Since Un(a, r) converges to
U(a, r) (in L(X)), see e.g. [28, Lemma 6.21], the lemma is proved.

Remark 4.2. For the biological interpretation it is essential that the diffusion
process does not create individuals, that is, U(a, r) is contractive on L1(Ω). This
is true if ‖etA(a)‖ ≤ 1 for a ∈ I and t ≥ 0 (which holds if, e.g., αk(a, x) =∑n
l=1 akl(a, x)nl(x) and bk = c = γ = 0, [2, Thm. 10.3]). In fact, then the
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Yosida approximations An(a) generate contraction semigroups. Thus, the corre-
sponding evolution families Un(·, ·) are contractive, see e.g. [27, Cor. 4.5], and hence
‖U(a, r)‖ ≤ 1.

Let G(0) := Id and G(t)ϕ := χΩ (Kt ∗ ϕ), t > 0, for ϕ ∈ L1(Ω), where Kt(x) =

(4πt)−n/2 exp(− |x|
2

4t ) for x ∈ Rn and ϕ is extended by 0 to Rn. In [20] it is stated
that U(a, r) satisfies a Gaussian estimate, that is, for 0 ≤ t ≤ T and (a+ t, a) ∈ D
there are constants N, c > 0 (possibly depending on T ) such that

0 ≤ U(a+ t, a) = |U(a+ t, a)| ≤ NG(ct). (4.6)

The proof in [20] is sketched very briefly. However, it can easily be provided by
combining the estimate (3.34) in [21] with (2.6)–(2.8) in [21] and Theorem 5.7 in
[28]. We use (4.6) to verify the Miyadera conditions for the multiplication operators
V (·).

Lemma 4.3. Assume (O), (A), (B), and (V). Then the operators U(a, r) and V (a)
defined above satisfy (M). Using the notations of Section 3, we have

0 ≤ UV (a, r) ≤ U(a, r), 0 ≤ TV (t) ≤ T0(t), 0 ≤ R(λ,GV ) ≤ R(λ,G0) (4.7)

for (a, r) ∈ D, t ≥ 0, and λ > ω(U) ≥ ω(UV ).

Proof. The measurability condition in (M) can be checked by approximating the
function µ pointwise a.e. by bounded functions, cf. [23, §5]. Using (4.6), Hölder’s

and Young’s inequality, and ‖Kt‖Lp′ (Rn) = C t−
n
2p for a constant C and 1

p + 1
p′ = 1,

we compute

‖V (a+ t)U(a+ t, a)ϕ‖1 ≤ N ‖µ(a+ t, ·)‖p ‖G(ct) |ϕ|‖p′
≤ NC t−

n
2p ‖µ(a+ t, ·)‖p ‖ϕ‖1 (4.8)

for (a+ t, a) ∈ D and ϕ ∈ L1(Ω). Now, (M) follows from∫ t

0

‖V (a+ τ)U(a+ τ, a)ϕ‖1 dτ ≤ C1 t
κ ‖µ‖Lq

loc,u(I,Lp(Ω)) ‖ϕ‖1 (4.9)

for a constant C1 and κ = 1 − 1
q −

n
2p > 0. By [33, Rem. 2.1] and Lemma 4.1, we

see that 0 ≤ TV (t) ≤ T0(t). This implies the remaining assertions.

In the sequel, we use the concepts from Section 3 to solve (P). In particular, a
continuous function u : [s,∞)→ E is called generalized solution of (P) if it satisfies
(3.7). In the definition of G, see (3.5), we choose ω greater than the constant w used
in (4.3) and (4.4). As an immediate consequence of Lemma 4.3, Theorem 3.4 and
Proposition 2.4, we obtain the following existence theorem. It generalizes results in
the autonomous case from [19], [24], [30], [31] (where in [30] and [31] more general
β are considered). See also [8], [10], and [15] for the L2–setting.

Theorem 4.4. Assume (O), (A), (B), (V), and (b). Then there is a unique gen-
eralized solution of (P) for f ∈ E and s ≥ 0. It is given by u = W (·, s)f for a
positive evolution family (W (t, s))t≥s≥0 on E. Moreover, if β ∈ C1(R+, L

∞(I×Ω))
and f(0) = B(s)f , then u is a classical solution of (3.6). If β does not depend on
t, then W (t, s) = S(t−s) for the C0–semigroup S(·) generated by the operator GV B
defined in (3.8).

Observe that in the above theorem the regularity assumption on β could be
weakened since we only need strong continuity of B(·) to obtain mild solutions.
Of course, it is crucial to determine G in order to understand our notion of a
generalized solution of (P). This could be achieved for the state space Lp(I × Ω)
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with 1 < p < ∞, cf. [23, §4]. To give a partial answer in the case p = 1, we
introduce the spaces

F := {f ∈ E : f ∈W 1,1(I,X), f(a) ∈ D(A(a)) for a.e. a ∈ I, A(·)f(·) ∈ E},
F0 := {f ∈ F : f(0) = 0}, and F1 := {f ∈ F : f(0) ∈ D(A(0))}

and the operator Lf := −f ′ + A(·)f ∈ E with domain F ⊆ E. Further, W s,1(Ω)
denotes the usual Sobolev space of (fractional) order s ≥ 0, cf. [7, §4.3]. The last
assertion in the following result was shown for A(a) ≡ A by G. Di Blasio in [9,
Thm. 4.1].

Proposition 4.5. Assume (O), (A), and (B). Then G0 is the closure of (L,F0)
in E. Also, (L,F1) ⊆ (G,D(G)) and F1 is dense in D(G) endowed with the graph
norm. In particular, G is the closure of (L,F1) as an operator from E × eωX to
E, cf. Remark 3.2. On the other hand, D(G) ⊆ W β,1(I, L1(Ω)) for 0 ≤ β < 1.

Moreover, if Γ1 = ∅, then D(G) ⊆ L1(I,W 2θ,1(Ω) ∩W 1,1
0 (Ω)) for 1

2 < θ < 1.

Proof. Considering L− d, G0 − d, and G− d, we may assume that d = 0 in (4.3)–
(4.5).

(i) It is known that G0 is the closure of (L,F00) for a space F00 ⊆ F0 ∩D(G0),
see [27, Prop. 1.13] and also [16, Prop. 2.9]. Further, for a − t ≥ 0 and f ∈ F , we
have

T0(t)f(a)− f(a) = (U(a, a− t)− Id)A(a− t)−1A(a− t)f(a− t) + f(a− t)− f(a).

Using (4.4) and (4.5), it is then easy to see that 1
t (T0(t)f − f)→ Lf in E, and so

G0 is the closure of (L,F0). Due to estimate (4.3), the operator G extends (L,F1).
Further, let f = f0 + eωf(0) ∈ D(G) for f0 ∈ D(G0). There are f0,n ∈ F0 such
that f0,n → f0 and Lf0,n → G0f0 in E and D(A(0)) 3 xn → f(0) in X. Thus
fn := f0,n + eωxn ∈ F1 converges to f in the graph norm of G. The other assertion
concerning (L,F1) is then clear.

(ii) Because (4.3) the operators (−A(·))α, 0 ≤ α < 1, satisfy (M). Due to [23,
Thm. 3.4] and (4.3), this implies D(G) ⊆ {f ∈ E : f(a) ∈ D((−A(a))α) for a.e. a ∈
I, (−A(·))αf(·) ∈ E}. Thus, for f ∈ D(G0), we can write

t−γ(T0(t)f(a)− f(a)) = t−γ(U(a, a− t)− Id)(−A(a− t))−α(−A(a− t))αf(a− t)
+ t−γ(f(a− t)− f(a))

for a − t ≥ 0 and 0 < β < γ < α < 1. The first summand on the right hand side
converges to 0 in E as t → 0 by (4.4). Together with (4.3) and (4.4), this shows
D(G) ⊆W β,1(I, L1(Ω)).

(iii) Now assume Γ1 = ∅. For 0 ≤ θ < 1, we introduce the (real) interpolation
space

DA(a)(θ, 1) := {ϕ ∈ L1(Ω) : ‖ϕ‖A(a)
θ,1 := ‖ϕ‖1 +

∫ ∞
0

t−θ‖A(a)etA(a)ϕ‖1 dt <∞},

see e.g. [7, §3.5]. Then, D((−A(a))α) ⊆ DA(a)(θ, 1) for θ < α ≤ 1, and the

embedding is continuous uniformly in a. We have DA(a)(θ, 1) ∼= W 2θ,1(Ω)∩W 1,1
0 (Ω)

for θ ∈ ( 1
2 , 1) by [9, Thm. 3.2]. An inspection of the proof shows that the norms are

uniformly equivalent with respect to a. Hence, D(G) ⊆ L1(I,W 2θ,1(Ω)∩W 1,1
0 (Ω))

for θ ∈ ( 1
2 , 1).

We now study the asymptotic behaviour of generalized solutions of (P). First,
we have
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Lemma 4.6. Assume (O), (A), (B), and (V). Then, ω(UV ) = ω(U) = −∞ for
finite am and ω(UV ) ≤ ω(U) < 0 for am =∞ if c ≤ 0 and Γ1 = ∅.

Proof. We only have to show ω(U) < 0 if am =∞, c ≤ 0 and Γ1 = ∅. Due to [34,
pp.14], there are constants C, ε > 0 such that ‖U(a + t, a)ϕ‖∞ ≤ Ce−εt‖ϕ‖∞ for
t, a ≥ 0 and ϕ ∈ D(Ap(a)), 1 < p <∞. By means of (4.6) we derive

‖U(a+ t, a)ϕ‖1 ≤ |Ω|C e−ε(t−1)‖U(a+ 1, a)ϕ‖∞ ≤ C1 e
−εt ‖ϕ‖1

for ϕ ∈ L∞(Ω), t ≥ 1, and a constant C1. (Here we have used that, by [28, p.284],
there is a unique evolution family Up(·, ·) solving (4.2) for Ap(·) on Lp(Ω), 1 < p <
∞, and that Up(a + t, a)ϕ = U(a + t, a)ϕ for ϕ ∈ Lp(Ω) ⊆ L1(Ω).) Moreover,
‖U(a+ t, a)‖ ≤M1 for a ≥ 0 and 0 ≤ t ≤ 1. Consequently, ω(U) ≤ −ε.

To verify (H1) and (H2) from Section 2, we need the following regularity result.

Lemma 4.7. Assume (O), (A), (B), and (V) for am = ∞. Let t0 > 0. Then
UV (a+ t, a)→ UV (a+ t0, a) in L(X) as t→ t0 uniformly in a ∈ R+.

Proof. By considering e−dtUV (a + t, a), we may and shall assume d = 0 in (4.3)
and (4.4). Let t0 +1 ≥ t ≥ t0 > 0, a ≥ 0, and ϕ ∈ L1(Ω). By C we denote a generic
constant depending on t0. From (3.3) follows

UV (a+ t, a)ϕ− UV (a+ t0, a)ϕ

= U(a+ t, a)ϕ− U(a+ t0, a)ϕ−
∫ a+t

a+t0

U(a+ t, τ)V (τ)UV (τ, a)ϕdt

−
∫ a+t0

a

(U(a+ t, τ)− U(a+ t0, τ))V (τ)UV (τ, a)ϕdτ =: S1 + S2 + S3.

Using (4.3) and (4.4), we estimate

‖S1‖ ≤ ‖(U(a+t, a+t0)−Id)A(a+t0)−1‖ ‖A(a+t0)U(a+t0, a)ϕ‖ ≤ C (t−t0) ‖ϕ‖.

Further, by means of (4.7) and (4.9),

‖S2‖ ≤ C
∫ t−t0

0

‖V (a+t0+τ)UV (a+t0+τ, a+t0)UV (a+t0, a)ϕ‖ dτ ≤ C (t−t0)κ ‖ϕ‖

for some κ > 0. Finally, (4.7), (4.3), (4.4), (4.8), and Hölder’s inequality yield

‖S3‖ ≤
∫ a+t0

a

‖(U(a+ t, a+ t0)− Id)(−A(a+ t0))−θ‖

· ‖(−A(a+ t0))θU(a+ t0, τ)‖‖V (τ)U(τ, a)ϕ‖ dτ

≤ C (t− t0)θ ‖ϕ‖
∫ t0

0

(t0 − τ)−θ‖µ(τ + a, ·)‖p τ−
n
2p dτ

≤ C (t− t0)θ ‖ϕ‖

for 0 < θ < 1
q′ . The case t0 ≥ t > δ > 0 can be treated in the same way.

We can now prove the main theorem of this paper. It extends results in
the autonomous case shown in [19, §5], [24, Thm. 3.5], [30, §4], [31, §5], see
also [8] for the L2–setting. We refer to [17, B-IV.2, C-IV.2] concerning quasi–
compact semigroups. The peripherical spectrum of a bounded operator S is de-
fined by σπ(S) := σ(S) ∩ {|λ| = r(S)}. Recall that r(V (p, 0)) = eω(V )p and
σ(V (s+ p, s)) = σ(V (p, 0)), s ≥ 0, for a p–periodic evolution family (V (t, s))t≥s≥0,
see Corollary 2.2 and its proof.
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Theorem 4.8. Assume (O), (A), (B), (V), (b) and that β is p–periodic in t. Let
eωep = re(W (p, 0)) for the p–periodic, positive evolution family (W (t, s))t≥s≥0 on
E given by Theorem 4.4. Then ωe ≤ ω(UV ), where ω(UV ) = −∞ if am < ∞
and ω(UV ) < 0 if am = ∞ and c ≤ 0, Γ1 = ∅. Further, if ωe < ω(W ) and if the
constants α < β < ω(W ) are chosen sufficiently close to ω(W ), then (W (t, s))t≥s≥0

has an exponential splitting with exponents α, β and projections P (s) which have
the same kernels as the operators eω(W )lp −W (lp + s, s) for some l ∈ N and all
s ≥ 0.
Moreover, if β does not depend on t and ωe < ω(W ), then (e−ω(W )tS(t))t≥0 is
quasi–compact, ω(W ) is an eigenvalue of the generator GV B given by Theorem 4.4
with finite algebraic multiplicity and pole order m, and we have∥∥∥∥∥e−ω(W )tS(t)−

m−1∑
k=0

tk

k!
(GV B − ω(W ))kP

∥∥∥∥∥ ≤ Ce−εt (4.10)

for t ≥ 0, constants C, ε > 0, and the projection P on the eigenspace corresponding
to the eigenvalue ω(W ).

Proof. (i) As in preceding section, we define B(t), GV , and TV,0(t) on E := X×E and
E0 := {0} ×E ∼= E. By Lemma 3.3 and 4.3, GV is a resolvent positive Hille-Yosida
operator, and so we obtain a perturbed positive evolution family (W (t, s))t≥s≥0 on
E which is p–periodic due to the expansion (2.4).

(ii) We first consider the case am = ∞. In view of Proposition 2.6, we have to
verify (H1) and (H2) for B(t) and GV in order to apply Corollary 2.2 to W (t, s) on
E. We estimate

‖B(t0) (TV,0(t)− TV,0(s))
(

0
f

)
‖X×L1(R+,X) (4.11)

=

∥∥∥∥∫ ∞
t

β(t0, a, ·)UV (a, a− t)f(a− t) da−
∫ ∞
s

β(t0, a, ·)UV (a, a− s)f(a− s) da
∥∥∥∥
X

≤
∫ ∞

0

‖β(t0, a+ t, ·)− β(t0, a+ s, ·)‖∞ ‖UV (a+ t, a)f(a)‖ da

+

∫ ∞
0

‖β(t0, a+ s, ·)‖∞ ‖UV (a+ t, a)− UV (a+ s, a)‖ ‖f(a)‖ dt

≤ ‖f‖ sup
a≥0

(Mewt‖β(t0, a+ t, ·)− β(t0, a+ s, ·)‖∞

+ ‖β‖∞ ‖UV (a+ t, a)− UV (a+ s, a)‖)

for t ≥ s ≥ δ > 0, t0 ≥ 0, and f ∈ L1(R+, X). So assumption (b) and Lemma 4.7
imply (H1). Further, (4.7) and (4.6) yield

0 ≤ B(t)TV,0(ε)

(
0

f

)
≤
(
N ‖β‖∞G(cε)

∫∞
0
f(a) da

0

)
=: Kε

(
0

f

)
for 0 ≤ f ∈ E and ε > 0, where Kε ∈ L(E0, E). It is known that Kt ∗ f ∈W 1,1(Rn)
for f ∈ L1(Rn), see e.g. [7, 4.3.7, 4.3.14]. Also, by (O) and Rellich’s theorem, [28,
Cor. 3.2], W 1,1(Ω) is compactly embedded in L1(Ω). Consequently, G(cε) ∈ L(X)
is compact, and hence Kε is compact. Continuity of t 7→ KεTV,0(t) ∈ L(E0, E)
for t > 0 is shown as in (4.11). Therefore (H2) holds, and Corollary 2.2 yields
ωe ≤ ω(TV,0) = ω(UV ). Also, we have ω(UV ) < 0 if c ≤ 0 and Γ1 = ∅ due to
Lemma 4.6.

(iii) For finite am, we extend A(·), V (·), and β by setting A(a) := A(am),
V (a) := −2a, and β(t, a, ·) := β(t, am, ·) for a > am. This gives an extended

evolution family (U∞V (a, r))a≥r≥0 on L1(Ω), where U∞V (a+ t, a) = e−t
2−2atetA(am)
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for a ≥ am and t ≥ 0. Hence, (U∞V (a, r))a≥r≥0 satisfies the conclusion of Lemma 4.7
and ω(U∞V ) = −∞.

Denote by T∞V (·) the corresponding evolution semigroup on L1(R+, X) with
generator G∞V . Set Pf := χIf ∈ L1([0, am], X) for f ∈ L1(R+, X) and let
Jf ∈ L1(R+, X) be the extension by 0 of f ∈ L1([0, am], X). Then, PT∞V (t) =
TV (t)P and PG∞V = GV P . Further, we perturb the corresponding Hille-Yosida
operator G∞V on L1(Ω) × L1(R+ × Ω) by (the matrix operators corresponding
to) the operators in L(L1(R+, X), X) given by B∞(t)f =

∫ am
0

β(t, a, ·)f(a)da

and B̃(t)f =
∫∞

0
β(t, a, ·)f(a)da, respectively. This yields two evolution families

(W∞(t, s))t≥s≥0 and (W̃ (t, s))t≥s≥0 on L1(R+, X). It follows from the uniqueness
of solutions to (3.10) that W (t, s) = PW∞(t, s)J , and hence

W (t, s) =

∞∑
k=0

PW∞n (t, s)J, (4.12)

where W∞n (t, s) is the coefficient of the Dyson-Phillips expansion of W∞(t, s). Fur-

ther, by the first part of the proof, the remainder R̃3(t, s) of W̃ (t, s) is compact
for t ≥ s ≥ 0. From the Dyson-Phillips expansion of W (t, s) and Proposition 2.4

we derive that 0 ≤ R∞3 (t, s)S ≤ R̃3(t, s)S for 0 ≤ S ∈ L(L1(R+, X)). Since any
bounded operator on L1(R+ × Ω) can be written as linear combination of positive
operators, [26, IV.1.5], the Dodds-Fremlin theorem, [36, Thm. 124.3], shows that
(R∞3 (t, s)S)2 is compact for t ≥ s ≥ 0 and S ∈ L(L1(R+, X)). Hence, the remain-
der PR∞3 (t, s)J of the expansion (4.12) is strictly power compact in L1([0, am], X).
As in in the proof of Proposition 2.1, we can verify (2.6) for W (t, s) and obtain as
in Corollary 2.2 that ωe = −∞ for finite am.

(iv) Let ωe < ω(W ). The claims in the autonomous case follow from [17, C-
IV.2.1,2.2]. The remaining assertions can be deduced from Corollary 2.2 provided
there is l ∈ N such that the boundary spectrum σπ(W (lp, 0)) only consists of
eω(W )lp. But this is a consequence of the cyclicity and finiteness of σπ(W (p, 0)),
see [26, Thm. IV.4.9].

Remark 4.9. In the situation of Theorem 4.8, assume that β does not depend on t.
By Lemma 3.1(d), the eigenfunctions of GV B for an eigenvalue λ with Reλ > ω(U)
are given by f(a) = e−λaUV (a, 0)ϕ, where ϕ ∈ L1(Ω) satisfies

ϕ =

∫ am

0

β(a, ·)e−λaUV (a, 0)ϕda =: Bλϕ.

Let ω(W ) > ω(U) (which is true if, for instance, am < ∞ and ω(W ) > −∞
or ω(W ) ≥ 0 and Γ1 = ∅, c ≤ 0). Assume that Bλ maps positive functions
to strictly positive functions, that is, Bλ irreducible. (This is the case, e.g., if
infx∈Ω β(a, x) > 0 for a in set of positive measure and if we have Dirichlet boundary
conditions, see [6, Thm. 9].) Now, from [26, Thm. V.5.2] follows as in [8] that
ω(W ) is a simple eigenvalue. Then (4.10) holds with m = 1 = dimPE, that is,
(e−ω(W )tS(t))t≥0 has balanced exponential growth.

Concluding we indicate how the above results can be generalized if we replace
(V) by the more general assumption (V’). For the truncated potentials Vn(·) :=
χ[0,bn]V (·), we obtain evolution families (Un(a, r))(a,r)∈D on X being uniquely de-
termined by (3.4) for Vn(·). Thus UV (a, r) := Un(a, r) for 0 ≤ r ≤ a ≤ bn defines a
strongly continuous evolution family on L1(Ω) for the interval [0, am). Notice that

0 ≤ UV (a, r) ≤ Un(a, r) ≤ U(a, r) (4.13)
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for 0 ≤ r ≤ a < am and n ∈ N. So UV (·, ·) induces by (3.1) a C0–semigroup TV (·)
on E. Its generator is denoted by GV . By [33, Cor 2.7], GV is an extension of
(G0 − V,D(G0) ∩ D(V )). On the other hand, if f ∈ D(GV ) with f(a) = 0 on
[am − δ, am] for some δ > 0, then f ∈ D(G0) ∩D(V ) and GV f = (G0 − V )f . This
implies that D(GV ) consists of continuous functions vanishing at a = 0 (use that
αf ∈ D(GV ) for f ∈ D(GV ) and α ∈ C1[0, am) with compact support and being
equal to 1 on [0, b] for b < am, cf. [27, Thm. 2.6]).

Similar as in (3.5), we define an extension of GV by

G̃V f := GV f0 + ωeVω x for f ∈ D(G̃V ) := {f = f0 + eVωϕ : f0 ∈ D(GV ), ϕ ∈ X}

for a fixed ω > ω(UV ). Further, on E we introduce the operator GV
(

0
f

)
=
(−f(0)

G̃V f

)
for f ∈ D(G̃V ). By the arguments used in the proof of Lemma 3.1 and 3.3, one can

show that ker(λ − G̃V ) = {eVλ ϕ : ϕ ∈ X} and that GV is a Hille-Yosida operator
with resolvent

R(λ,GV ) =

(
0 0
eVλ R(λ,GV )

)
(4.14)

for Reλ > ω(UV ). Proceeding as in the proof of Theorem 3.4, we then obtain mild

solutions of (3.6) for the operator (G̃V , D(G̃V )) given by a positive evolution family
(W (t, s))t≥s≥0.

Let now β be p–periodic in t. We denote by (Wn(t, s))t≥s≥0 the evolution fami-
lies on E solving (3.7) for G − Vn. Due to (4.13), (4.14), and Proposition 2.4, the
remainder Rn3 (t, s) of the Dyson-Phillips expansion of Wn(t, s) dominates the re-
mainder R3(t, s) of W (t, s). Thus, 0 ≤ R3(t, s)S ≤ Rn3 (t, s)S for each 0 ≤ S ∈ L(E)
and so (R3(t, s)S)2 is compact for t ≥ s ≥ 0 due to Proposition 2.6 and the Dodds-
Fremlin theorem, [36, Thm. 124.3]. By [26, IV.1.5], this implies that R3(t, s) is
strictly power compact for t ≥ s ≥ 0, and thus the conclusions of Corollary 2.2
hold.

Finally, in the autonomous case we obtain the same expression for the eigen-
functions of GV B as in Remark 4.9. Also, e−ω(W )tS(t) converges exponentially to
a one dimensional projection if the additional conditions of Remark 4.9 hold.
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gestions.

REFERENCES .

[1] P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equa-

tions, Differential Integral Equations 1 (1988), 433–457.
[2] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel

J. Math. 45 (1983), 225–254.

[3] H. Amann, “Linear and Quasilinear Parabolic Problems. Volume 1: Abstract Linear Theory”,
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